Puna Geothermal Venture Flow Testing: Facility Design Upgrades and Results

Nicholas Prina¹, Doug Jung², John Akerley¹, Derek Caro¹, Patrick Broderick³, Charley Wahl³, Paul Spielman¹, Adam Johnson¹, Ezra Zemach¹, Jordan Hara⁴, Gary Dahl⁴

¹Ormat Technologies, Inc; ²Two Phase Engineering & Research, Inc; ³West Coast Geologic Inc.; ⁴Puna Geothermal Venture

GEOTHERMAL RISING CONFERENCE OCTOBER 27-30, 2024 | HILTON WAIKOLOA VILLAGE | WAIKOLOA, HI

Puna Geothermal Venture Flow Testing: Facility Design Upgrades and Results

KS-22 Flow Test

Presenting Author: Nick Prina Ormat Technologies, Inc.

KS-19 Flow Test

Puna Geothermal Venture Project Overview

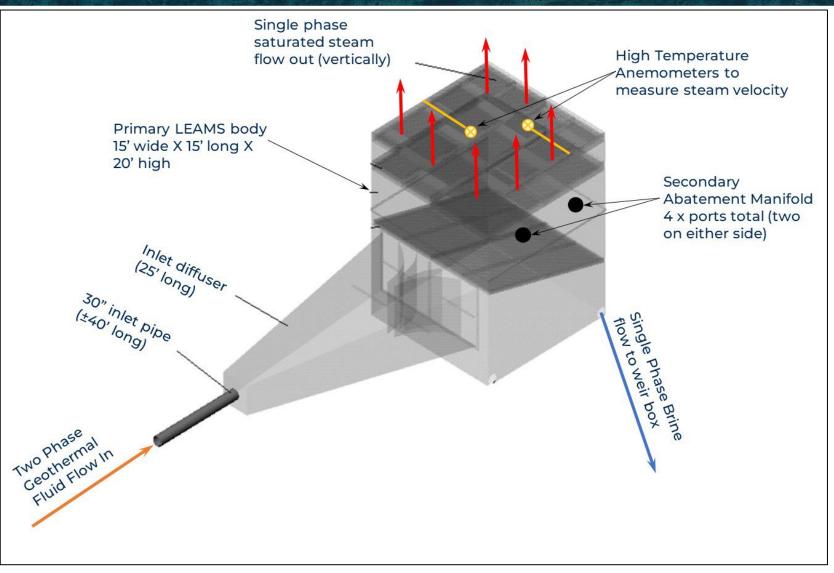
two flow tests.

grc2024.mygeoenergynow.org geothermal.org

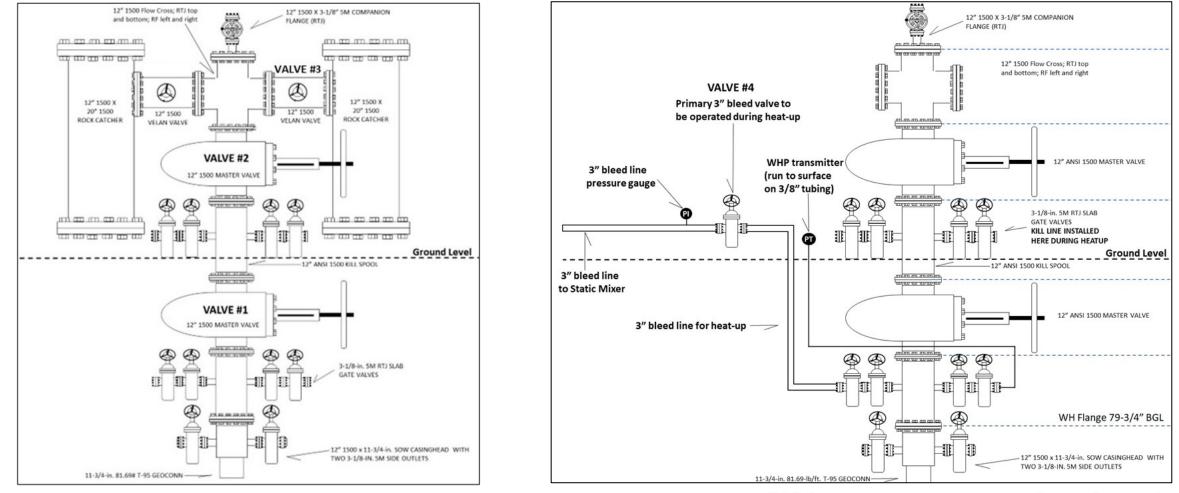
operations

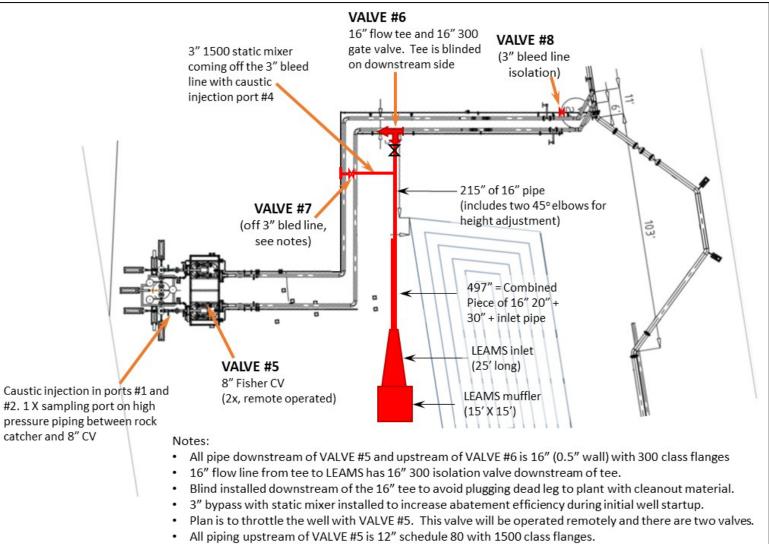
Flow Testing at Puna Geothermal Venture

- While atmospheric flows tests are standard practice for geothermal projects around the world, they had not been completed at PGV since 2006 due to complex permit requirements.
 - Maximum duration of 4-hours per day during daylight hours.
 - H2S emissions below 2.27 kg/hr
 - H2S at air monitoring stations below:
 - 25 ppb (1-hr rolling average)
 - 10 ppb (24-hr rolling average)
 - H2S concentrations measured upstream and downstream of abatement at least 2x during the 4-hour test period.
 - Minimum abatement treatment mole ratio of 4 to 1 (NaOH to H2S).
 - Public notification period.


Upgraded Flow Test Facility Design

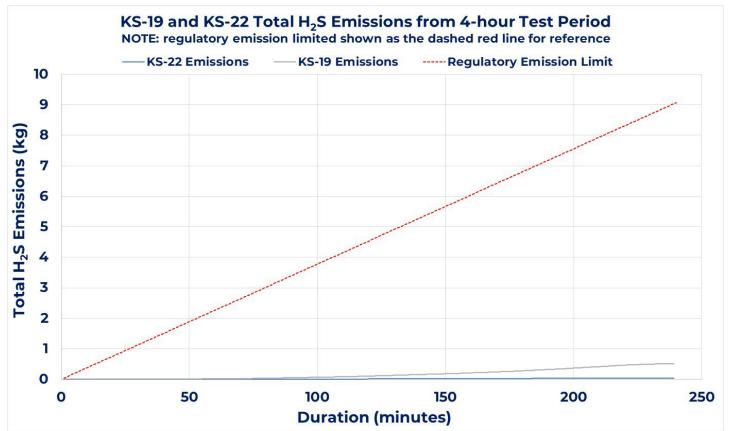
- To meet the strict permit requirements, Ormat/PGV teamed up with Two-Phase Engineering and Research (TPE) and West Coast Geologic (WCG) to design an upgraded facility.
- Primary goals of the upgraded facility:
 - Ensure safety of testing personnel, the local community, and the environment.
 - Meet all permit requirements
 - Optimize H2S abatement efficiency.
 - Improve separation efficiency to ensure no carryover of caustic treated brine.
 - Implement real time metering of steam flow and H2S emissions.


Upgraded Flow Test Facility Design


- The goals of the upgraded facility were addressed by implementing the following:
 - LEAMS muffler designed by TPE in late 1990s procured and sent to PGV.
 - Secondary abatement manifold installed to treat steam inside the LEAMS.
 - Static mixer assembly installed on 3" bypass for use during initial well startup.
 - James tube removed in favor of a 30" inlet pipe to reduce fluid velocity and improve separation efficiency.
 - Steam flow metered using high temperature anemometer (Kurz Instruments).
 - Two H2S monitors installed directly on the muffler outlet to measure H2S concentrations in venting steam in real time (3-4 additional monitors on the ground in working area).
 - Chelated zinc solution added to brine flow through weir box to ensure H2S stays in solution.
 - Part of the plant's permanent tie-in piping used to allow use of remote operated CVs.
 - Redundancy of all critical abatement related surface equipment:
 - Primary and backup generators for powering abatement pumps.
 - Primary and backup high pressure abatement pumps for the main dosing location.
 - Primary and backup abatement ports installed at the main dosing location.
 - Abatement at both the main dosing location and via the secondary LEAMS manifold.

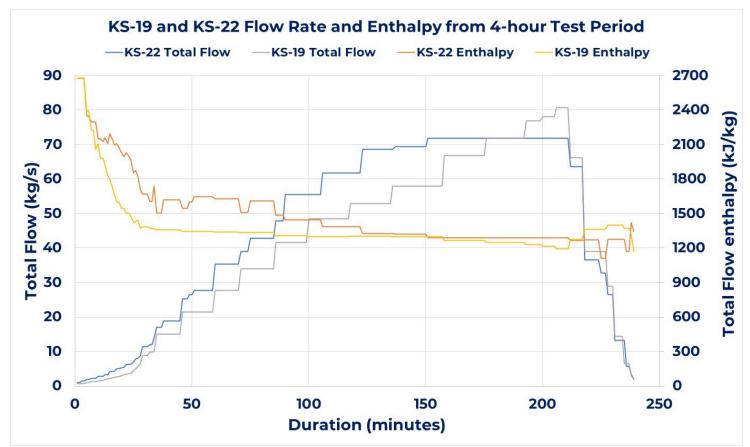
Upgraded Flow Test Facility (LEAMS)

Upgraded Flow Test Facility (Wellhead Assembly)



- VALVE #7 is the 3" 1500 gate valve just upstream of the static mixer
- VALVE #8 is the 3" 1500 gate valve isolating the downstream plant bleed system.

Upgraded Flow Test Facility (full facility)


Flow Test Results

- Flow tests successfully completed for new wells in 2023 (KS-19 & KS-22).
- Both tests were completed well within the regulatory limits.
- H2S emissions over 17x below permit limit for first test and over 200x below for second.
- Third test completed in 2024 with no measured H2S emissions.

Flow Test Results

- Both new wells successfully flowed into the plant at the end of the 4-hr test period.
- No impact on generation while bringing new wells in.
- Some drilling debris still observed in plant equipment due to short permitted duration.
- Steam flow successfully metered using high temperature anemometer.

Conclusions

- Atmospheric flow tests can be safely conducted at PGV within the current regulatory constraints.
- However, the limited 4-hr duration is not long enough to fully cleanout drilling debris or get meaningful flow test dataset.
- Use of the upgraded equipment allows wells to be put into plant service seamlessly, with limited to no impact on generation.
- Successful flow tests resulted in significant generation gains.
 - Generation improved by a factor of 100% following first test
 - 150% improvement in generation following second test with a sustained 120% improvement after a year.
- While a change to the regulatory framework would be advantageous, significant gains can still be realized within the existing framework.

Thank You!

